Step 1: Use midpoint of chord concept.
For a conic \(S=0\), the chord given by a line \(L=0\) has midpoint where the line \(L=0\) meets the diameter (line joining midpoints of parallel chords). Step 2: Solve intersection of hyperbola with line and find midpoint (direct method).
Line:
\[
4x-3y=5 \Rightarrow y=\frac{4x-5}{3}
\]
Substitute into hyperbola:
\[
2x^2-3\left(\frac{4x-5}{3}\right)^2=12
\]
\[
2x^2-\frac{(4x-5)^2}{3}=12
\]
Multiply by 3:
\[
6x^2-(4x-5)^2=36
\]
\[
6x^2-(16x^2-40x+25)=36
\]
\[
6x^2-16x^2+40x-25=36
\]
\[
-10x^2+40x-61=0
\Rightarrow 10x^2-40x+61=0
\]
Roots are \(x_1,x_2\). Midpoint x-coordinate:
\[
x_m=\frac{x_1+x_2}{2}=\frac{\frac{40}{10}}{2}=\frac{4}{2}=2
\]
Now find y using line:
\[
y_m=\frac{4(2)-5}{3}=\frac{8-5}{3}=1
\] Final Answer:
\[
\boxed{(2,1)}
\]