Step 1: Understanding binomial distribution properties.
For a binomial distribution \( B(n, p) \), - Mean \( \mu = np \) - Variance \( \sigma^2 = np(1 - p) \)
Step 2: Finding \( n \) and \( p \).
Given: \[ np = 4 \] \[ np(1 - p) = 2 \] Substituting \( np = 4 \) into variance equation: \[ 4(1 - p) = 2 \] \[ 1 - p = \frac{1}{2} \Rightarrow p = \frac{1}{2} \] Using \( np = 4 \): \[ n \times \frac{1}{2} = 4 \Rightarrow n = 8 \]
Step 3: Computing \( P(X = 1) \).
\[ P(X = 1) = \binom{8}{1} p^1 (1 - p)^{8 - 1} \] \[ = \binom{8}{1} \times \left( \frac{1}{2} \right)^1 \times \left( \frac{1}{2} \right)^7 \] \[ = 8 \times \frac{1}{2} \times \frac{1}{128} = \frac{8}{256} = \frac{1}{32} \] Thus, the correct answer is (B).
Consider a curve \( y = y(x) \) in the first quadrant as shown in the figure. Let the area \( A_1 \) be twice the area \( A_2 \). The normal to the curve perpendicular to the line \[ 2x - 12y = 15 \] does NOT pass through which point?