If the function
\[
f(x) =
\begin{cases}
1, & x \leq 2 \\
ax + b, & 2 < x < 4 \\
7, & x \geq 4
\end{cases}
\]
is continuous at \( x = 2 \) and \( x = 4 \), then the values of \( a \) and \( b \) are:
Show Hint
For continuity at \( x = a \), ensure \( \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a) \).