Step 1: Checking continuity at \( x = 2 \).
For continuity,
\[
\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2)
\]
\[
1 = a(2) + b
\]
\[
2a + b = 1
\]
Step 2: Checking continuity at \( x = 4 \).
\[
\lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x) = f(4)
\]
\[
a(4) + b = 7
\]
\[
4a + b = 7
\]
Step 3: Solving for \( a \) and \( b \).
Solving the system:
\[
2a + b = 1
\]
\[
4a + b = 7
\]
Subtracting,
\[
2a = 6 \Rightarrow a = 3
\]
Substituting \( a = 3 \):
\[
2(3) + b = 1
\]
\[
6 + b = 1 \Rightarrow b = -5
\]
Thus, the correct answer is (A) \( a = 3, b = -5 \).