Step 1: {Identify the corner points of the feasible region}
From the graph, the vertices of the feasible region are: \[ A(0, 50), \, B(20, 30), \, C(30, 0). \]
Step 2: {Substitute corner points into \( Z = 4x + y \)}
Evaluate \( Z \) at each vertex: \[ Z_A = 4(0) + 50 = 50,\] \[\quad Z_B = 4(20) + 30 = 110,\]
\(\quad Z_C = 4(30) + 0 = 120.\)
Step 3: {Find the maximum value}
The maximum value of \( Z \) occurs at \( C(30, 0) \), where \( Z = 120 \).
Step 4: {Verify the options}
The maximum value is \( 120 \), which corresponds to option (C).
A manufacturer makes two types of toys A and B. Three machines are needed for production with the following time constraints (in minutes): \[ \begin{array}{|c|c|c|} \hline \text{Machine} & \text{Toy A} & \text{Toy B} \\ \hline M1 & 12 & 6 \\ M2 & 18 & 0 \\ M3 & 6 & 9 \\ \hline \end{array} \] Each machine is available for 6 hours = 360 minutes. Profit on A = Rupee 20, on B = Rupee 30.
Formulate and solve the LPP graphically.