Question:

The maximum value of\( z=2.5x+y\) subject to the constraints \( x+3y\leq12, 3x+y\leq12, x, y\geq0, \) is: 

Updated On: May 12, 2025
  • 4
  • 8.5
  • 10.5
  • 10
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

To find the maximum value of \( z=2.5x+y \) subject to the constraints \( x+3y\leq12, 3x+y\leq12, x\geq0, y\geq0\), we follow these steps:
  1. Identify the feasible region by solving the inequalities.
  2. Find the intersection points of the lines defined by \( x+3y=12 \) and \( 3x+y=12 \).
LineIntersection with X-axisIntersection with Y-axis
\(x+3y=12\)\(x=12, y=0\)\(x=0, y=4\)
\(3x+y=12\)\(x=4, y=0\)\(x=0, y=12\)
  1. Find the intersection of \(x+3y=12\) and \(3x+y=12\):
    • Substitute \(y=12-3x\) into \(x+3(12-3x)=12\).
    • Solve: \(x+36-9x=12 \Rightarrow -8x=-24 \Rightarrow x=3, y=3\).
  2. Evaluate \(z\) at intersection points:
    • \((0, 0): z=0\)
    • \((12, 0): z=30\)
    • \((4, 0): z=10\)
    • \((0, 4): z=4\)
    • \((3, 3): z=10.5\)
  3. The maximum value occurs at \((3, 3)\): \(z=10.5\).
The maximum value is 10.5.
Was this answer helpful?
0
0