The maximum value of the directional derivative at a point is the magnitude of the gradient vector at that point.
Given: \( \varphi = x^2 yz \)
Gradient:
\[
\nabla \varphi = \left( \frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z} \right)
= \left( 2x y z, x^2 z, x^2 y \right)
\]
At the point \( (1, 4, 1) \), we get:
\[
\nabla \varphi = \left(2 \cdot 1 \cdot 4 \cdot 1, 1^2 \cdot 1, 1^2 \cdot 4\right) = (8, 1, 4)
\]
Magnitude of gradient:
\[
|\nabla \varphi| = \sqrt{8^2 + 1^2 + 4^2} = \sqrt{64 + 1 + 16} = \sqrt{81} = 9
\]