A matrix is singular if its determinant is zero. The determinant of a 3x3 matrix
\[
\begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
\]
is given by:
\[
\text{det} = a(ei - fh) - b(di - fg) + c(dh - eg)
\]
For the given matrix, we calculate the determinant:
\[
\text{det} = (3 - x) \cdot \text{det}\left( \begin{bmatrix} 4 - x & 1 \\ -4 & -1 - x \end{bmatrix} \right) - 2 \cdot \text{det}\left( \begin{bmatrix} 2 & 1 \\ -2 & -1 - x \end{bmatrix} \right) + 2 \cdot \text{det}\left( \begin{bmatrix} 2 & 4 - x \\ -2 & -4 \end{bmatrix} \right)
\]
After performing the necessary calculations, you will find that the determinant is zero when \( x = 0 \) and \( x = 3 \), which means the matrix is singular for these values of \(x\).
Thus, the correct answer is (A) \( x = 0 \) and \( x = 3 \), and (C) \( x = 0 \) and \( x = 6 \) as the matrix is singular for these values of \(x\).