Given Parameters
Initial conditions:
Mass flow rate (\(\dot{m}_1\)) = 2 kg/s
Stagnation pressure (\(p_{0,1}\)) = 1 MPa = \(1 \times 10^6\) Pa
Stagnation temperature (\(T_{0,1}\)) = 800 K
\end{itemize}
New conditions:
Stagnation pressure (\(p_{0,2}\)) = 3 MPa = \(3 \times 10^6\) Pa
Stagnation temperature (\(T_{0,2}\)) = 200 K
\end{itemize}
\end{itemize}
Key Concept
The mass flow rate in a choked nozzle (supersonic wind tunnel) is given by:
\[
\dot{m} = \frac{p_0 A^}{\sqrt{T_0}} \sqrt{\frac{\gamma}{R}} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}
\]
where:
\(p_0\) = stagnation pressure
\(T_0\) = stagnation temperature
\(A^\) = throat area (constant for the same tunnel)
\(\gamma\) = specific heat ratio (constant for perfect gas)
\(R\) = gas constant (constant for perfect gas)
\end{itemize}
Step 1: Mass Flow Rate Ratio
For the same tunnel (\(A^\) constant) and same gas (\(\gamma\), \(R\) constant), the mass flow rate ratio is:
\[
\frac{\dot{m}_2}{\dot{m}_1} = \frac{p_{0,2}/\sqrt{T_{0,2}}}{p_{0,1}/\sqrt{T_{0,1}}}
\]
Step 2: Calculate New Mass Flow Rate
Substitute the given values:
\[
\frac{\dot{m}_2}{2} = \frac{3/\sqrt{200}}{1/\sqrt{800}} = 3 \times \sqrt{\frac{800}{200}} = 3 \times \sqrt{4} = 3 \times 2 = 6
\]
\[
\dot{m}_2 = 6 \times 2 = 12 \, {kg/s}
\]
Final Answer
The new mass flow rate is \(\boxed{12}\) kg/s.