Given Parameters
Initial conditions:
Mass flow rate (\( \dot{m}_1 \)) = 2 kg/s
Stagnation pressure (\( p_{0,1} \)) = 1 MPa = \( 1 \times 10^6 \) Pa
Stagnation temperature (\( T_{0,1} \)) = 800 K
New conditions:
Stagnation pressure (\( p_{0,2} \)) = 3 MPa = \( 3 \times 10^6 \) Pa
Stagnation temperature (\( T_{0,2} \)) = 200 K
Key Concept
The mass flow rate in a choked nozzle (supersonic wind tunnel) is given by:
\[
\dot{m} = \frac{p_0 A^*}{\sqrt{T_0}} \sqrt{\frac{\gamma}{R}} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}
\]
where:
\( p_0 \) = stagnation pressure
\( T_0 \) = stagnation temperature
\( A^* \) = throat area (constant for the same tunnel)
\( \gamma \), \( R \) = constants for the gas
Step 1: Mass Flow Rate Ratio
Since \( A^* \), \( \gamma \), and \( R \) are constant:
\[
\frac{\dot{m}_2}{\dot{m}_1} = \frac{p_{0,2}/\sqrt{T_{0,2}}}{p_{0,1}/\sqrt{T_{0,1}}}
\]
Step 2: Calculate New Mass Flow Rate
Substitute the values:
\[
\frac{\dot{m}_2}{2} = \frac{3/\sqrt{200}}{1/\sqrt{800}} = 3 \times \sqrt{\frac{800}{200}} = 3 \times \sqrt{4} = 3 \times 2 = 6
\]
\[
\dot{m}_2 = 6 \times 2 = 12 \, \text{kg/s}
\]
Final Answer
The new mass flow rate is \( \boxed{12} \, \text{kg/s} \).