The magnetic moment of the O3 molecule is zero because it is diamagnetic. Despite having unpaired electrons in its molecular orbitals, the overall molecular configuration leads to no net magnetic moment. This is due to the symmetric distribution of electrons in the molecule.
Since the O3 molecule has no unpaired electrons in its ground state and no net magnetic moment, the correct answer is 0 Bohr magnetons.
What is the empirical formula of a compound containing 40% sulfur and 60% oxygen by mass?
Match the LIST-I with LIST-II.
Choose the correct answer from the options given below :
Which of the following molecules(s) show/s paramagnetic behavior?
$\mathrm{O}_{2}$
$\mathrm{N}_{2}$
$\mathrm{F}_{2}$
$\mathrm{S}_{2}$
Given below are two statements:
Statement I : The N-N single bond is weaker and longer than that of P-P single bond
Statement II : Compounds of group 15 elements in +3 oxidation states readily undergo disproportionation reactions.
In the light of above statements, choose the correct answer from the options given below
One mole of a monoatomic ideal gas starting from state A, goes through B and C to state D, as shown in the figure. Total change in entropy (in J K\(^{-1}\)) during this process is ............... 
The number of chiral carbon centers in the following molecule is ............... 
A tube fitted with a semipermeable membrane is dipped into 0.001 M NaCl solution at 300 K as shown in the figure. Assume density of the solvent and solution are the same. At equilibrium, the height of the liquid column \( h \) (in cm) is ......... 
An electron at rest is accelerated through 10 kV potential. The de Broglie wavelength (in A) of the electron is .............