Time period (T) of oscillation of a magnetic needle in a magnetic field is given by:
$T = 2\pi \sqrt{\frac{I}{mB}}$
where: * I is the moment of inertia. * m is the magnetic moment. * B is the magnetic field.
Given: I = $\frac{10^{-6}}{\pi^2}$ kg m2 m = 1.0 × 10-2 A m2
Time for 10 oscillations = 10 s Time period (T) = $\frac{10}{10}$ = 1 s
1 = $2\pi \sqrt{\frac{10^{-6}/\pi^2}{(10^{-2})B}}$
1 = $2\sqrt{\frac{10^{-4}}{B}}$
B = 4 × 10-4
T = 0.4 mT
List-I | List-II | ||
(A) | [Co(NH3)5(NO2)]Cl2 | (I) | Solvate isomerism |
(B) | [Co(NH3)5(SO4)]Br | (II) | Linkage isomerism |
(C) | [Co(NH3)6] [Cr(CN)6] | (III) | Ionization isomerism |
(D) | [Co(H2O)6]Cl3 | (IV) | Coordination isomerism |
List I | List II | ||
---|---|---|---|
A | Robert May | I | Species-Area relationship |
B | Alexander von Humboldt | II | Long term ecosystem experiment using out door plots |
C | Paul Ehrlich | III | Global species diversity at about 7 million |
D | David Tilman | IV | Rivet popper hypothesis |