The magnetic force per unit length \( F/L \) on a current-carrying wire in a magnetic field is given by: \[ \frac{F}{L} = B I \sin \theta \] where - \( B = 200 \, {mT} = 200 \times 10^{-3} \, {T} = 0.2 \, {T} \), - \( I = 4\sqrt{3} \, {A} \), - \( \theta = 60^\circ \).
Calculate the force per unit length: \[ \frac{F}{L} = 0.2 \times 4\sqrt{3} \times \sin 60^\circ \] We know \[ \sin 60^\circ = \frac{\sqrt{3}}{2} \] So, \[ \frac{F}{L} = 0.2 \times 4\sqrt{3} \times \frac{\sqrt{3}}{2} = 0.2 \times 4 \times \frac{3}{2} = 0.2 \times 6 = 1.2 \, {N/m} \]