The magnetic flux through a loop varies with time as \(Φ= 5t^2 -3t +5\). If the resistance of loop is \(8\) , find the current through it at \(t = 2\) \(s\)
\(\frac{15}{8} A\)
\(\frac{5}{8} A\)
\(\frac{17}{8} A\)
\(\frac{13}{8} A\)
The Correct Option is (C) : \(\frac{17}{8} A\)
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?
A uniform circular disc of radius \( R \) and mass \( M \) is rotating about an axis perpendicular to its plane and passing through its center. A small circular part of radius \( R/2 \) is removed from the original disc as shown in the figure. Find the moment of inertia of the remaining part of the original disc about the axis as given above.
The magnetic field is a field created by moving electric charges. It is a force field that exerts a force on materials such as iron when they are placed in its vicinity. Magnetic fields do not require a medium to propagate; they can even propagate in a vacuum. Magnetic field also referred to as a vector field, describes the magnetic influence on moving electric charges, magnetic materials, and electric currents.