Step 1: Identify components
At $z = 0$:
Region 1:
Region 2:
Step 2: Calculate surface current density
The discontinuity in tangential $\vec{H}$ gives surface current: $$\vec{K} = \hat{n} \times (\vec{H}_2 - \vec{H}_1)$$
where $\hat{n} = \hat{z}$ (normal from region 1 to region 2).
Since $\vec{H} = \frac{\vec{B}}{\mu_0}$:
$$\vec{H}_{1t} = \frac{3\hat{x}}{\mu_0}$$
$$\vec{H}_{2t} = \frac{\hat{x} + 3\hat{y}}{\mu_0}$$
$$\vec{H}{2t} - \vec{H}{1t} = \frac{-2\hat{x} + 3\hat{y}}{\mu_0}$$
Step 3: Calculate surface current
$$\vec{K} = \hat{z} \times \frac{-2\hat{x} + 3\hat{y}}{\mu_0}$$
Using $\hat{z} \times \hat{x} = \hat{y}$ and $\hat{z} \times \hat{y} = -\hat{x}$:
$$\vec{K} = \frac{-2\hat{y} - 3\hat{x}}{\mu_0} = \frac{-3\hat{x} - 2\hat{y}}{\mu_0}$$
Step 4: Calculate magnitude
$$|\vec{K}| = \frac{\sqrt{9 + 4}}{\mu_0} = \frac{\sqrt{13}}{\mu_0}$$
$$= \frac{\sqrt{13}}{4\pi \times 10^{-7}} = \frac{3.606}{4\pi \times 10^{-7}}$$
$$= \frac{3.606}{1.257 \times 10^{-6}} = 2.868 \times 10^6 \text{ A/m}$$
Therefore: $\alpha = 2.87$
Answer: 2.87
