Question:

The magnetic field $ \vec{B} $ in a circular coil does not depend on:

Updated On: Jul 14, 2022
  • current
  • radius
  • number of turns
  • area
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The magnetic field at the centre of circular coil $B=\frac{\mu_{0} n I}{2 r}$ where $r=$ radius of coil $I=$ current flowing in the coil. $n=$ number of turns in a coil Therefore, magnetic field in a circular coil does not depend on area of coil.
Was this answer helpful?
0
0

Top Questions on Magnetic Field

View More Questions

Concepts Used:

Magnetic Field

The magnetic field is a field created by moving electric charges. It is a force field that exerts a force on materials such as iron when they are placed in its vicinity. Magnetic fields do not require a medium to propagate; they can even propagate in a vacuum. Magnetic field also referred to as a vector field, describes the magnetic influence on moving electric charges, magnetic materials, and electric currents.

A magnetic field can be presented in two ways.

  • Magnetic Field Vector: The magnetic field is described mathematically as a vector field. This vector field can be plotted directly as a set of many vectors drawn on a grid. Each vector points in the direction that a compass would point and has length dependent on the strength of the magnetic force.
  • Magnetic Field Lines: An alternative way to represent the information contained within a vector field is with the use of field lines. Here we dispense with the grid pattern and connect the vectors with smooth lines.

Properties of Magnetic Field Lines

  • Magnetic field lines never cross each other
  • The density of the field lines indicates the strength of the field
  • Magnetic field lines always make closed-loops
  • Magnetic field lines always emerge or start from the north pole and terminate at the south pole.