Step 1: Represent the lines in symmetric form: For the first line (\( L_1 \)), the symmetric equation is given as: \[ \frac{1 - x}{2} = \frac{y - 1}{3} = \frac{z}{1} \] Rewriting this in parametric form: \[ x = 1 - 2t, \quad y = 1 + 3t, \quad z = t \] The direction ratios of \( L_1 \) are: \[ a_1 = -2, \, b_1 = 3, \, c_1 = 1 \] For the second line (\( L_2 \)), the symmetric equation is given as: \[ \frac{2x - 3}{2p} = \frac{y}{-1} = \frac{z - 4}{7} \] Rewriting this in parametric form: \[ x = \frac{3}{2} + pt, \quad y = -t, \quad z = 4 + 7t \] The direction ratios of \( L_2 \) are: \[ a_2 = p, \, b_2 = -1, \, c_2 = 7 \]
Step 2: Apply the condition for perpendicularity: Two lines are perpendicular if the dot product of their direction ratios is zero: \[ a_1 a_2 + b_1 b_2 + c_1 c_2 = 0 \] Substituting the direction ratios of \( L_1 \) and \( L_2 \): \[ (-2)(p) + (3)(-1) + (1)(7) = 0 \] Simplify the equation: \[ -2p - 3 + 7 = 0 \] \[ -2p + 4 = 0 \] \[ p = 2 \]
Step 3: Verify the result: For \( p = 2 \), the direction ratios of \( L_2 \) become: \[ a_2 = 2, \, b_2 = -1, \, c_2 = 7 \] The dot product with \( L_1 \) is: \[ (-2)(2) + (3)(-1) + (1)(7) = -4 - 3 + 7 = 0 \] Thus, the lines are perpendicular.
Conclusion: The value of \( p \) is \( \mathbf{2} \).
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |
In number theory, it is often important to find factors of an integer \( N \). The number \( N \) has two trivial factors, namely 1 and \( N \). Any other factor, if it exists, is called a non-trivial factor of \( N \). Naresh has plotted a graph of some constraints (linear inequations) with points \( A(0, 50) \), \( B(20, 40) \), \( C(50, 100) \), \( D(0, 200) \), and \( E(100, 0) \). This graph is constructed using three non-trivial constraints and two trivial constraints. One of the non-trivial constraints is \( x + 2y \geq 100 \).
Based on the above information, answer the following questions:
On her birthday, Prema decides to donate some money to children of an orphanage home.
If there are 8 children less, everyone gets ₹ 10 more. However, if there are 16 children more, everyone gets ₹ 10 less. Let the number of children in the orphanage home be \( x \) and the amount to be donated to each child be \( y \).
Based on the above information, answer the following questions:
Let \( X \) denote the number of hours a Class 12 student studies during a randomly selected school day. The probability that \( X \) can take the values \( x_i \), for an unknown constant \( k \):
\[ P(X = x_i) = \begin{cases} 0.1, & {if } x_i = 0, \\ kx_i, & {if } x_i = 1 { or } 2, \\ k(5 - x_i), & {if } x_i = 3 { or } 4. \end{cases} \]The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: