If the origin is shifted to a point \( P \) by the translation of axes to remove the \( y \)-term from the equation \( x^2 - y^2 + 2y - 1 = 0 \), then the transformed equation of it is:
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).
A straight line is a figure created when two points A (x1, y1) and B (x2, y2) are connected with a minimum distance between them, and both the ends are extended to immensity (infinity). With variables x and y, the standard form of a linear equation is: ax + by = c, where a, b, and c are constants and x, and y are variables.
The equation of a straight line whose slope is m and passes through a point (x1, y1) is formed or created using the point-slope form. The equation of the point-slope form is:
y - y1 = m (x - x1),
where (x, y) = an arbitrary point on the line.