If the origin is shifted to a point \( P \) by the translation of axes to remove the \( y \)-term from the equation \( x^2 - y^2 + 2y - 1 = 0 \), then the transformed equation of it is:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?


A straight line is a figure created when two points A (x1, y1) and B (x2, y2) are connected with a minimum distance between them, and both the ends are extended to immensity (infinity). With variables x and y, the standard form of a linear equation is: ax + by = c, where a, b, and c are constants and x, and y are variables.

The equation of a straight line whose slope is m and passes through a point (x1, y1) is formed or created using the point-slope form. The equation of the point-slope form is:
y - y1 = m (x - x1),
where (x, y) = an arbitrary point on the line.