Step 1: Points involved.
Let:
\[
A(5,0),\quad B(10\cos\theta,10\sin\theta)
\]
Point \(P\) divides \(AB\) internally in ratio \(2:3\).
Step 2: Use section formula.
If \(AP:PB=2:3\), then:
\[
P\left(\frac{3x_1+2x_2}{5},\frac{3y_1+2y_2}{5}\right)
\]
Here:
\[
(x_1,y_1)=(5,0),\quad (x_2,y_2)=(10\cos\theta,10\sin\theta)
\]
So:
\[
x=\frac{3(5)+2(10\cos\theta)}{5}
=\frac{15+20\cos\theta}{5}
=3+4\cos\theta
\]
\[
y=\frac{3(0)+2(10\sin\theta)}{5}
=\frac{20\sin\theta}{5}
=4\sin\theta
\]
Step 3: Eliminate \(\theta\).
\[
x-3=4\cos\theta,\quad y=4\sin\theta
\]
Square and add:
\[
(x-3)^2+y^2=16(\cos^2\theta+\sin^2\theta)=16
\]
Step 4: Identify locus.
\[
(x-3)^2+y^2=16
\]
This is a circle with centre \((3,0)\) and radius 4.
Final Answer:
\[
\boxed{\text{a circle}}
\]