We are given \( \lim_{x \to 0} \frac{3 \sin^2 2x}{x^2} \).
Using the standard limit result \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), we can simplify the expression as: \[ \lim_{x \to 0} \frac{3 \sin^2 2x}{x^2} = 3 \cdot \lim_{x \to 0} \frac{\sin^2 2x}{x^2} = 3 \cdot \lim_{x \to 0} \left( \frac{\sin 2x}{x} \right)^2. \] Since \( \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \), we get: \[ \lim_{x \to 0} \frac{3 \sin^2 2x}{x^2} = 3 \cdot 2^2 = 12. \] Thus, the limit is 12.
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.