Question:

The limit \( \lim_{x \to 0} \frac{3 \sin^2 2x}{x^2} \) is equal to:

Show Hint

Apply the standard limit \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \) to simplify the expression.
Updated On: Mar 7, 2025
  • 3
  • 2
  • 6
  • \( \frac{3}{2} \)
  • 12
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is

Solution and Explanation

We are given \( \lim_{x \to 0} \frac{3 \sin^2 2x}{x^2} \). 
Using the standard limit result \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), we can simplify the expression as: \[ \lim_{x \to 0} \frac{3 \sin^2 2x}{x^2} = 3 \cdot \lim_{x \to 0} \frac{\sin^2 2x}{x^2} = 3 \cdot \lim_{x \to 0} \left( \frac{\sin 2x}{x} \right)^2. \] Since \( \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \), we get: \[ \lim_{x \to 0} \frac{3 \sin^2 2x}{x^2} = 3 \cdot 2^2 = 12. \] Thus, the limit is 12.

Was this answer helpful?
0
0