We are given \( \lim_{x \to 0} \frac{3 \sin^2 2x}{x^2} \).
Using the standard limit result \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \), we can simplify the expression as: \[ \lim_{x \to 0} \frac{3 \sin^2 2x}{x^2} = 3 \cdot \lim_{x \to 0} \frac{\sin^2 2x}{x^2} = 3 \cdot \lim_{x \to 0} \left( \frac{\sin 2x}{x} \right)^2. \] Since \( \lim_{x \to 0} \frac{\sin 2x}{x} = 2 \), we get: \[ \lim_{x \to 0} \frac{3 \sin^2 2x}{x^2} = 3 \cdot 2^2 = 12. \] Thus, the limit is 12.
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals