Step 1: Compare with standard parabola form.
Standard form:
\[
y^2=4ax
\]
Given:
\[
y^2=12x \Rightarrow 4a=12 \Rightarrow a=3
\]
Step 2: End points of latus rectum.
For \(y^2=4ax\), latus rectum is line \(x=a\) and endpoints are:
\[
(a,2a),\ (a,-2a)
\]
So endpoints are:
\[
(3,6),\ (3,-6)
\]
Step 3: Express curve in terms of \(y\).
\[
x=\frac{y^2}{12}
\Rightarrow \frac{dx}{dy}=\frac{2y}{12}=\frac{y}{6}
\]
Step 4: Arc length formula with respect to \(y\).
\[
L=\int_{-6}^{6}\sqrt{1+\left(\frac{dx}{dy}\right)^2}\,dy
=\int_{-6}^{6}\sqrt{1+\left(\frac{y}{6}\right)^2}\,dy
\]
Step 5: Simplify integral using symmetry.
\[
L=2\int_{0}^{6}\sqrt{1+\frac{y^2}{36}}\,dy
=2\int_{0}^{6}\sqrt{\frac{36+y^2}{36}}\,dy
\]
\[
= \frac{2}{6}\int_{0}^{6}\sqrt{36+y^2}\,dy
= \frac{1}{3}\int_{0}^{6}\sqrt{36+y^2}\,dy
\]
Step 6: Use standard integral.
\[
\int\sqrt{y^2+a^2}\,dy=\frac{y}{2}\sqrt{y^2+a^2}+\frac{a^2}{2}\ln\left|y+\sqrt{y^2+a^2}\right|
\]
Here \(a^2=36\Rightarrow a=6\).
So:
\[
\int_{0}^{6}\sqrt{36+y^2}\,dy
= \left[\frac{y}{2}\sqrt{y^2+36}+18\ln\left(y+\sqrt{y^2+36}\right)\right]_{0}^{6}
\]
At \(y=6\):
\[
\frac{6}{2}\sqrt{72} + 18\ln(6+\sqrt{72})
=3\cdot 6\sqrt{2}+18\ln(6+6\sqrt2)
=18\sqrt2 +18\ln(6(1+\sqrt2))
\]
At \(y=0\):
\[
0 + 18\ln(6)
\]
Subtracting:
\[
=18\sqrt2 +18\ln(6(1+\sqrt2)) -18\ln 6
\]
\[
=18\sqrt2 +18\ln(1+\sqrt2)
\]
Step 7: Multiply by \(\frac{1}{3}\).
\[
L=\frac{1}{3}\left(18\sqrt2 +18\ln(1+\sqrt2)\right)
=6\left(\sqrt2+\ln(1+\sqrt2)\right)
\]
Final Answer:
\[
\boxed{6\left(\sqrt{2}+\log(1+\sqrt{2})\right)}
\]