The invention of the gas turbine by Frank Whittle in England and Hans von Ohain in Germany in 1939 signalled the beginning of jet transport. Although the French engineer Lorin had visualized the concept of jet propulsion more than 25 years earlier, it took improved materials and the genius of Whittle and von Ohain to recognize the advantage that a gas turbine offered over a piston engine, including speeds in excess of 350 miles per hour. The progress from the first flights of liquid propellant rocket and jet-propelled aircraft in 1939 to the first faster-than-sound (supersonic) manned airplane (the Bell X-1) in 1947 happened in less than a decade. This led very rapidly to a series of supersonic fighters and bombers, the first of which became operational in the 1950s. World War II technology foundations and emerging Cold War imperatives then led us into space with the launch of Sputnik in 1957 and the placing of the first man on the moon only 12 years later — a mere 24 years after the end of World War II.
Now a hypersonic flight can take you anywhere in the planet in less than four hours. British Royal Air Force and Royal Navy and the air forces of several other countries are going to use a single-engine cousin to the F/A-22, called the F-35 Joint Strike Fighter. These planes exhibit stealthy angles and coatings that make it difficult for radar to detect them, among aviation’s most cutting-edge advances in design. The V-22, known as tilt-rotor, part helicopter, part airplane, takes off vertically, then tilts its engine forward for winged flight. It provides speed, three times the payload, five times the range of the helicopters it’s meant to replace. The new fighter, F/A-22 Raptor, with more than a million parts, shows a perfect assimilation of stealth, speed, avionics and agility.
It seems conventional forms, like the Predator and Global Hawk are pass´ e, the stealthy unmanned aerial vehicles (UAVs) are in. They are shaped like kites, bats and boomerangs, all but invisible to the enemy radar and able to remain over hostile territory without any fear of getting grilled if shot down. Will the UAVs take away pilots’ jobs permanently? Can a computer-operated machine take a smarter and faster decision in a war-like situation? The new free-flight concept will probably supplement the existing air traffic control system by computers on each plane to map the altitude, route, weather and other planes; and a decade from now, there will be no use of radar any more.
How much bigger can the airplanes get? In the ’50s they got speed, in the ’80s they became stealthy. Now they are getting smarter thanks to computer automation. The change is quite huge: from the four-seater to the A380 airplane. It seems we are now trading speed for size as we build a new superjumbo jet, the 555 seater A380, which will fly at almost the same speed of the Boeing 707, introduced half a century ago, but with an improved capacity, range, greater fuel economy. A few years down the line will come the truly larger model, to be known as 747X. In the beginning of 2005, the A380, the world’s first fully double-decked superjumbo passenger jet, weighing 1.1 million pounds, may carry a load of about 840 passengers.
Barring the early phase, civil aviation has always lagged behind the military technologies (of jet engines, lightweight composite materials, etc.). There are two fundamental factors behind the decline in commercial aeronautics in comparison to military aeronautics. There is no collective vision of our future such as the one that drove us in the past. There is also a need for a more aggressive pool of airplane design talents to maintain an industry that continues to find a multibillion dollar-a-year market for its product.
Can the history of aviation technology tell us something about the future of aeronautics? Have we reached a final state in our evolution to a mature technology in aeronautics? Are the challenges of coming out with the ‘better, cheaper, faster’ designs somehow inferior to those that are suited for ‘faster, higher, further’? Safety should improve greatly as a result of the forthcoming improvements in airframes, engines, and avionics. Sixty years from now, aircraft will recover on their own if the pilot loses control. Satellites are the key not only to GPS (global positioning system) navigation but also to in-flight communications, uplinked weather, and even in-flight e-mail. Although there is some debate about what type of engines will power future airplanes — lightweight turbines, turbocharged diesels, or both — there is little debate about how these power plants will be controlled. Pilots of the future can look forward to more and better on-board safety equipment.
Meta is recalibrating content on its social media platforms as the political tide has turned in Washington, with Mark Zuckerberg announcing last week that his company plans to fire its US fact-checkers. Fact-checking evolved in response to allegations of misinformation and is being watered down in response to accusations of censorship. Social media does not have solutions to either. Community review — introduced by Elon Musk at X and planned by Zuckerberg for Facebook and Instagram — is not a significant improvement over fact-checking. Having Washington lean on foreign governments over content moderation does not benefit free speech. Yet, that is the nature of the social media beast, designed to amplify bias.
Information and misinformation continue to jostle on social media at the mercy of user discretion. Social media now has enough control over all other forms of media to broaden its reach. It is the connective tissue for mass consumption of entertainment, and alternative platforms are reworking their engagement with social media. Technologies are shaping up to drive this advantage further through synthetic content targeted precisely at its intended audience. Meta’s algorithm will now play up politics because it is the flavour of the season.
The Achilles’ Heel of social media is informed choice which could turn against misinformation. Its move away from content moderation is driven by the need to be more inclusive, yet unfiltered content can push users away from social media towards legacy forms that have better moderation systems in place. Lawmakers across the world are unlikely to give social media a free run, even if Donald Trump is working on their case. Protections have already been put in place across jurisdictions over misinformation. These may be difficult to dismantle, even if the Republicans pull US-owned social media companies further to the right.
Media consumption is, in essence, evidence-based judgement that mediums must adapt to. Content moderation, not free speech, is the adaptation mechanism. Musk and Zuckerberg are not exempt
According to the French philosopher Jean Baudrillard, commodities available for consumption are not inherently negative things. Baudrillard tried to interpret consumption in modern societies by engaging with the ’cargo myth’ prevalent among the indigenous Melanesian people living in the South Pacific. The Melanesians did not know what aeroplanes were. However,they saw that these winged entities descended from the air for white people and appeared to make them happy. They also noted that aeroplanes never descended for the Melanesian people. The Melanesian natives noted that the white people had placed objects similar to the aeroplane on the ground. They concluded that these objects were attracting the aeroplanes in the air and bringing them to the ground. Through a magical process, the aeroplanes were bringing plenty to the white people and making them happy. The Melanesian people concluded that they would need to place objects that simulated the aeroplane on the ground and attract them from the air. Baudrillard believes that the cargo myth holds an important analogy for the ways in which consumers engage with objects of consumption.
According to Baudrillard, the modern consumer ”sets in place a whole array of sham objects, of characteristic signs of happiness, and then waits for happiness to alight”. For instance, modern consumers believe that they will get happiness if they buy the latest available version of a mobile phone or automobile. However, consumption does not usually lead to happiness. While consumers should ideally be blaming their heightened expectations for their lack of happiness, they blame the commodity instead.
They feel that they should have waited for the next version of a mobile phone or automobile before buying the one they did. The version they bought is somehow inferior and therefore cannot make them happy. Baudrillard argues that consumers have replaced ’real’ happiness with ’signs’ of happiness. This results in the endless deferment of the arrival of total happiness. In Baudrillard’s words, ”in everyday practice, the blessings of consumption are not experienced as resulting from work or from a production process; they are experienced as a miracle”. Modern consumers view consumption in the same magical way as the Melanesian people viewed the aeroplanes in the cargo myth. Television commercials also present objects of consumption as miracles. As a result, commodities appear to be distanced from the social processes which lead to their production. In effect, objects of consumption are divorced from the reality which produces them.
CONVERSATION ANALYSIS: Read the following transcript and choose the answer that is closest to each of the questions that are based on the transcript.
Lucia Rahilly (Global Editorial Director, The McKinsey Podcast): Today we’re talking about the next big arenas of competition, about the industries that will matter most in the global business landscape, which you describe as arenas of competition. What do we mean when we use this term?
Chris Bradley (Director, McKinsey Global Institute): If I go back and look at the top ten companies in 2005, they were in traditional industries such as oil and gas, retail, industrials, and pharmaceuticals. The average company was worth about $250 billion. If I advance the clock forward to 2020, nine in ten of those companies have been replaced, and by companies that are eight times bigger than the old guards.
And this new batch of companies comes from these new arenas or competitive sectors. In fact, they’re so different that we have a nickname for them. If you’re a fan of Harry Potter, it’s wizards versus muggles.
Arena industries are wizardish; we found that there’s a set of industries that play by very different set of economic rules and get very different results, while the rest, the muggles (even though they run the world, finance the world, and energize the world), play by a more traditional set of economic rules.
Lucia Rahilly: Could we put a finer point on what is novel or different about the lens that you applied to determine what’s a wizard and what’s a muggle?
Chris Bradley: Wizards are defined by growth and dynamism. We looked at where value is flowing and the places where value is moving. And where is the value flowing? What we see is that this set of wizards, which represent about ten percent of industries, hog 45 percent of the growth in market cap. But there’s another dimension or axis too, which is dynamism. That is measured by a new metric we’ve come up with called the ”shuffle rate.” How much does the bottom move to the top? It turns out that in this set of wizardish industries, or arenas, the shuffle rate is much higher than it is in the traditional industry.
Lucia Rahilly: So, where are we seeing the most profit?
Chris Bradley: The economic profit, which is the profit you make minus the cost for the capital you employ is in the wizard industries. It’s where R&D happens; they’re two times more R&D intensive. They’re big stars, the nebulae, where new business is born.