Question:

The integral \( \int \frac{dx}{\cos x + \sqrt{5} \sin x} \) equals

Show Hint

Use trigonometric substitution and simplifications to solve integrals involving sine and cosine functions.
Updated On: Jan 12, 2026
  • \( \frac{1}{2} \log \left( \frac{1 + \cos x}{\sin x} \right) + C \)
  • \( \frac{1}{2} \log \left( \frac{1}{\cos x} \right) + C \)
  • \( \int \frac{1}{\cos^2 x} dx \)
  • \( \frac{1}{2} \log \left( \cos x + \frac{1}{5} \right) + C \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Use substitution methods to solve the integral and simplify it.
Was this answer helpful?
0
0