The slope of the I–V graph is \( \frac{I}{V} = \frac{1}{R} \), so:
\[ R = \frac{1}{\tan(\theta)} \]
At \( T_1 = 100^\circ C \),
\[ R_1 = \frac{1}{\tan(45^\circ)} = \frac{1}{1} = 1 \]
At \( T_2 = 400^\circ C \),
\[ R_2 = \frac{1}{\tan(30^\circ)} = \frac{1}{1/\sqrt{3}} = \sqrt{3} \approx 1.732 \]
The formula for temperature coefficient \( \alpha \) is:
\[ R = R_0 (1 + \alpha \Delta T) \Rightarrow \alpha = \frac{R_2 - R_1}{R_1 \cdot \Delta T} \]
Here,
\[ R_1 = 1,\quad R_2 = \sqrt{3},\quad \Delta T = 400^\circ C - 100^\circ C = 300^\circ C \] \[ \alpha = \frac{\sqrt{3} - 1}{1 \cdot 300} = \frac{1.732 - 1}{300} = \frac{0.732}{300} \approx 2.44 \times 10^{-3} \]
Rounded to the nearest given option, this is approximately:
\[{3 \times 10^{-3}} \, \text{per}^\circ C \]
The temperature coefficient of resistance is approximately \( {3 \times 10^{-3}} \), so the correct answer is (A).