In triangle,
\(\tan 30=\frac{150-h}{60}\)
1/√3 \(=\frac{150-h}{60}\)
20√3 = 150 - h
h = 150- 20√3
h = 150 - 34.64
h = 115.36m (nearly equal to 116m).
So the correct option is (C)
If \( \theta \in \left[ -\frac{7\pi}{6}, \frac{4\pi}{3} \right] \), then the number of solutions of \[ \sqrt{3} \csc^2 \theta - 2(\sqrt{3} - 1)\csc \theta - 4 = 0 \] is equal to ______.