For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?

Enthalpy Change refers to the difference between the heat content of the initial and final state of the reaction. Change in enthalpy can prove to be of great importance to find whether the reaction is exothermic or endothermic.
dH = dU + d(PV)
The above equation can be written in the terms of initial and final states of the system which is defined below:
UF – UI = qP –p(VF – VI)
Or qP = (UF + pVF) – (UI + pVI)
Enthalpy (H) can be written as H= U + PV. Putting the value in the above equation, we obtained:
qP = HF – HI = ∆H
Hence, change in enthalpy ∆H = qP, referred to as the heat consumed at a constant pressure by the system. At constant pressure, we can also write,
∆H = ∆U + p∆V
To specify the standard enthalpy of any reaction, it is calculated when all the components participating in the reaction i.e., the reactants and the products are in their standard form. Therefore the standard enthalpy of reaction is the enthalpy change that occurs in a system when a matter is transformed by a chemical reaction under standard conditions.