As we know, for a conservative force field
$dU=-F_{con} dr$
where, $dU$ = change in potential energy,
$F_{con}$= conservative force (or $F_{in}$)
and $dr$ = change in position of the particle
$dU =-F_{in} dr$ or $\Delta U=-\int\limits_{r_1}^{r_{2}} F_{in} dr $
$U_{2}-U_{1}=-\int\limits_{r_1}^{r_{2}} F_{in} dr$ =-work done by $F_{in}$ (or $W_{in})$
For graph $\left(i\right)$, $W_{in}=\frac{F_{1}\cdot x_{1}}{2}$
For graph $\left(ii\right)$, $W_{in}=F_{1}\cdot x_{1}$
and for graph $\left(iii\right)$, $W_{in}=\frac{-F_{1}\cdot x_{1}}{2}$
Thus, change in potential energy
For graph $\left(i\right)$, $\Delta U_{1}=\frac{-F_{1}x_{1}}{2}$ graph $\left(ii\right)$ $\Delta U_{2}=-F_{1}x_{1}$
graph, $\left(iii\right)$ $\Delta U_{3}=\frac{F_{1}x_{1}}{2}$
Thus, we have,
$\Delta U_{2} < \, \Delta U_{1}