Step 1: Rewrite the equation using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \).
\[
\sin^2 \theta + 3(1 - \sin^2 \theta) = 5 \sin \theta
\]
\[
\sin^2 \theta + 3 - 3 \sin^2 \theta = 5 \sin \theta
\]
\[
3 - 2 \sin^2 \theta = 5 \sin \theta
\]
\[
2 \sin^2 \theta + 5 \sin \theta - 3 = 0
\]
Step 2: Solve the quadratic equation \( 2 \sin^2 \theta + 5 \sin \theta - 3 = 0 \).
We will solve it using the quadratic formula. The equation is in the form \( a \sin^2 \theta + b \sin \theta + c = 0 \), where:
\[
a = 2, \, b = 5, \, c = -3
\]
Using the quadratic formula:
\[
\sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
\[
\sin \theta = \frac{-5 \pm \sqrt{5^2 - 4(2)(-3)}}{2(2)}
\]
\[
\sin \theta = \frac{-5 \pm \sqrt{25 + 24}}{4}
\]
\[
\sin \theta = \frac{-5 \pm \sqrt{49}}{4}
\]
\[
\sin \theta = \frac{-5 \pm 7}{4}
\]
Thus, the two possible values for \( \sin \theta \) are:
\[
\sin \theta = \frac{-5 + 7}{4} = \frac{2}{4} = \frac{1}{2}, \quad \sin \theta = \frac{-5 - 7}{4} = \frac{-12}{4} = -3
\]
Since \( \sin \theta = -3 \) is not a valid solution (because \( \sin \theta \) must lie between -1 and 1), we have:
\[
\sin \theta = \frac{1}{2}
\]
Step 3: Determine the values of \( \theta \) that satisfy \( \sin \theta = \frac{1}{2} \).
The general solutions for \( \sin \theta = \frac{1}{2} \) are:
\[
\theta = \frac{\pi}{6} + 2n\pi \quad {or} \quad \theta = \pi - \frac{\pi}{6} + 2n\pi
\]
Simplifying:
\[
\theta = \frac{\pi}{6} + 2n\pi \quad {or} \quad \theta = \frac{5\pi}{6} + 2n\pi
\]
This can be written as:
\[
\theta = n\pi + (-1)^n \frac{\pi}{6}, \quad n \in \mathbb{Z}
\]
Step 4: Conclusion
Thus, the general solution is:
\[
\boxed{n\pi + (-1)^n \frac{\pi}{6}, \, n \in \mathbb{Z}}
\]