Question:

The general solution of the equation \( \sin^2 \theta + 3 \cos^2 \theta = 5 \sin \theta \) is:

Show Hint

When solving trigonometric equations, use known values of sine and cosine, and don't forget to apply the periodicity of the trigonometric functions to obtain the general solution.
Updated On: Mar 22, 2025
  • \( n\pi + \frac{\pi}{3}, n \in \mathbb{Z} \)
  • \( n\pi + (-1)^n \frac{\pi}{6}, n \in \mathbb{Z} \)
  • \( n\pi \pm \frac{\pi}{6}, n \in \mathbb{Z} \)
  • \( n\pi + (-1)^n \frac{\pi}{3}, n \in \mathbb{Z} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Rewrite the equation using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \). \[ \sin^2 \theta + 3(1 - \sin^2 \theta) = 5 \sin \theta \] \[ \sin^2 \theta + 3 - 3 \sin^2 \theta = 5 \sin \theta \] \[ 3 - 2 \sin^2 \theta = 5 \sin \theta \] \[ 2 \sin^2 \theta + 5 \sin \theta - 3 = 0 \] Step 2: Solve the quadratic equation \( 2 \sin^2 \theta + 5 \sin \theta - 3 = 0 \). We will solve it using the quadratic formula. The equation is in the form \( a \sin^2 \theta + b \sin \theta + c = 0 \), where: \[ a = 2, \, b = 5, \, c = -3 \] Using the quadratic formula: \[ \sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] \[ \sin \theta = \frac{-5 \pm \sqrt{5^2 - 4(2)(-3)}}{2(2)} \] \[ \sin \theta = \frac{-5 \pm \sqrt{25 + 24}}{4} \] \[ \sin \theta = \frac{-5 \pm \sqrt{49}}{4} \] \[ \sin \theta = \frac{-5 \pm 7}{4} \] Thus, the two possible values for \( \sin \theta \) are: \[ \sin \theta = \frac{-5 + 7}{4} = \frac{2}{4} = \frac{1}{2}, \quad \sin \theta = \frac{-5 - 7}{4} = \frac{-12}{4} = -3 \] Since \( \sin \theta = -3 \) is not a valid solution (because \( \sin \theta \) must lie between -1 and 1), we have: \[ \sin \theta = \frac{1}{2} \] Step 3: Determine the values of \( \theta \) that satisfy \( \sin \theta = \frac{1}{2} \). The general solutions for \( \sin \theta = \frac{1}{2} \) are: \[ \theta = \frac{\pi}{6} + 2n\pi \quad {or} \quad \theta = \pi - \frac{\pi}{6} + 2n\pi \] Simplifying: \[ \theta = \frac{\pi}{6} + 2n\pi \quad {or} \quad \theta = \frac{5\pi}{6} + 2n\pi \] This can be written as: \[ \theta = n\pi + (-1)^n \frac{\pi}{6}, \quad n \in \mathbb{Z} \] Step 4: Conclusion Thus, the general solution is: \[ \boxed{n\pi + (-1)^n \frac{\pi}{6}, \, n \in \mathbb{Z}} \]
Was this answer helpful?
0
0