Step 1: Identify the Equation Type
This is a first-order linear differential equation of the form \( \frac{dy}{dx} + P(x)y = Q(x) \), with \( P(x) = 2 \), \( Q(x) = e^{-x} \).
Step 2: Find Integrating Factor (I.F.)
\[ \text{I.F.} = e^{\int 2 \, dx} = e^{2x} \]
Step 3: Multiply through by I.F. and Integrate
\[ e^{2x} \frac{dy}{dx} + 2e^{2x} y = e^{x} \Rightarrow \frac{d}{dx}(y e^{2x}) = e^{x} \] \[ \Rightarrow y e^{2x} = \int e^{x} dx = e^{x} + C \Rightarrow y = e^{-x} + C e^{-2x} \]
Alternate Method: Using Homogeneous + Particular Solution
Homogeneous: \( y_h = C e^{-2x} \)
Try particular solution \( y_p = a e^{-x} \)
Substitute: \( -a e^{-x} + 2a e^{-x} = e^{-x} \Rightarrow a = 1 \)
General solution: \( y = e^{-x} + C e^{-2x} \)
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :