Given
\[
\frac{dy}{dx} = \frac{1}{3x + 5y}
\]
This is a homogeneous differential equation.
Use the substitution:
\[
v = 3x + 5y
\]
Then,
\[
\frac{dv}{dx} = 3 + 5 \frac{dy}{dx}
\]
Substitute \(\frac{dy}{dx}\) and simplify:
\[
\frac{dv}{dx} = 3 + \frac{5}{v}
\]
Separate variables and integrate:
\[
\int v \, dv = \int (3v + 5) \, dx
\]
Solve this to get the general solution:
\[
y = \frac{1}{3} \log(9x + 15y + 5) + C
\]