Question:

The general solution of differential equation \(\frac{d^2y}{dx^2}+9y=sin^3x\) is
(given that c1 and c2 are arbitrary constants)

Updated On: Mar 12, 2025
  • \(y=c_1\cos(3x+c_2)+\frac{1}{24}\sin x-sin3x\)
  • \(y=c_1e^{3x}+c_2e^{-3x}+\frac{1}{32}sinx+\frac{1}{2}\cos 3x\)
  • \(y=c_1+c_2xe^{3x}+2sinx-\frac{5}{13}sin3x\)
  • \(y=c_1sin(3x+c_2)+\frac{3}{32}sinx+\frac{x}{24}\cos 3x\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The correct answer is(D): \(y=c_1sin(3x+c_2)+\frac{3}{32}sinx+\frac{x}{24}\cos 3x\)
Was this answer helpful?
2
2