Question:

The general solution of \((D^2+6D+9)y=\frac{e^{-3x}}{x^2}\), where \(D\equiv \frac{d}{dx}\) is
(given that c1 and c2 are arbitrary constants)

Updated On: Mar 21, 2024
  • \(y=(c_1+c_2x)e^{-3x}+\frac{e^{-3x}}{2x}\)
  • \(y=(c_1+c_2x)e^{3x}+\frac{e^{3x}}{2x}\)
  • \(y=(c_1+c_2x^2)e^{-3x}+\frac{e^{-3x}}{2x}\)
  • \(y=(c_1+c_2x)e^{-3x}+\frac{e^{3x}}{2x}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The correct answer is(A): \(y=(c_1+c_2x)e^{-3x}+\frac{e^{-3x}}{2x}\)
Was this answer helpful?
0
0