The general solution of a differential equation of the type \(\frac{dx}{dy}+p_{1}x=Q1\) is
\(ye^{\int{p_{1}dy}}=\int{(Q_{1}e^{\int{p_{1}dy}})}dy+C\)
\(y.e^{\int{p_{1}dx}}=\int{(Q_{1}e^{\int{p_{1}dx}})}dx+C\)
\(xe^{\int{p_{1}dy}}=\int{(Q_{1}e^{\int{p_{1}dy}})}dy+C\)
\(xe^{\int{p_{1}dx}}=\int{(Q_{1}e^{\int{p_{1}dx}})}dx+C\)
The integrating factor of the given differential equation \(\frac{dx}{dy}+p_{1}x=Q_{1}\) is \(e^{∫p_{1}dy}.\)
The general solution of the differential equation is given by,
\(x(I.F.)=\)\(\int{(Q×I.F.)dy}+C\)
\(⇒x.e^{\int{p_{1}dy}}=\)\(\int{(Q_{1}e^{\int{p_{1}dy)}}dy}+C\)
Hence, the correct answer is C.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.