The general solution of a differential equation of the type \(\frac{dx}{dy}+p_{1}x=Q1\) is
\(ye^{\int{p_{1}dy}}=\int{(Q_{1}e^{\int{p_{1}dy}})}dy+C\)
\(y.e^{\int{p_{1}dx}}=\int{(Q_{1}e^{\int{p_{1}dx}})}dx+C\)
\(xe^{\int{p_{1}dy}}=\int{(Q_{1}e^{\int{p_{1}dy}})}dy+C\)
\(xe^{\int{p_{1}dx}}=\int{(Q_{1}e^{\int{p_{1}dx}})}dx+C\)
The integrating factor of the given differential equation \(\frac{dx}{dy}+p_{1}x=Q_{1}\) is \(e^{∫p_{1}dy}.\)
The general solution of the differential equation is given by,
\(x(I.F.)=\)\(\int{(Q×I.F.)dy}+C\)
\(⇒x.e^{\int{p_{1}dy}}=\)\(\int{(Q_{1}e^{\int{p_{1}dy)}}dy}+C\)
Hence, the correct answer is C.
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :