The absolute pressure is calculated as:
\[P_{\text{abs}} = P_{\text{gauge}} + P_{\text{atm}} + \rho g h\]
where:
$P_{\text{gauge}} = 0.4 \, \text{bar} = 0.4 \times 10^5 \, \text{Pa}$,
$P_{\text{atm}} = 1 \times 10^5 \, \text{Pa}$,
$\rho = 900 \, \text{kg/m}^3$,
$g = 9.81 \, \text{m/s}^2$,
$h = 50 \, \text{m}$.
Substitute the values:
\[P_{\text{abs}} = (0.4 \times 10^5) + (1 \times 10^5) + (900 \times 9.81 \times 50).\]
\[P_{\text{abs}} = 0.4 \times 10^5 + 1 \times 10^5 + 4.4145 \times 10^5 = 5.8145 \times 10^5 \, \text{Pa}.\]
Convert to bar:
\[P_{\text{abs}} = 5.8145 \, \text{bar}.\]