Step 1: Find first derivative.
\[ f'(x)=3x^2+2ax+b \]
Step 2: Condition for extreme values.
Extreme values exist if \(f'(x)=0\) has two distinct real roots.
That depends on discriminant of quadratic \(3x^2+2ax+b\).
Step 3: Compute discriminant.
\[ \Delta=(2a)^2-4(3)(b)=4a^2-12b=4(a^2-3b) \]
Step 4: Use given condition.
Given: \(a^2\leq 3b\).
So:
\[ a^2-3b\leq 0 \Rightarrow \Delta\leq 0 \]
Step 5: Conclusion.
If \(\Delta<0\), no real critical points \(\Rightarrow\) no maxima/minima.
If \(\Delta=0\), only one stationary point (point of inflection), still no max/min.
Thus function has no extreme value.
Final Answer:
\[ \boxed{\text{no extreme value}} \]