Step 1: Equilibrium in horizontal direction.
Since no horizontal force acts externally,
\[
\Sigma F_x = 0 \Rightarrow T_x = 0
\]
Step 2: Equilibrium in vertical direction.
\[
\Sigma F_y = 0 \Rightarrow T_y + W_y = 2000
\]
Step 3: Moment equilibrium about T.
- Vertical load of 2000 N acts at S, which is 3.6 m horizontally away from T.
\[
M_{2000} = 2000 \times 3.6 = 7200 \, \text{Nm (clockwise)}
\]
- Reaction at W acts vertically upward at 4.8 m from T:
\[
M_W = W_y \times 4.8 \, \text{(counter-clockwise)}
\]
Equilibrium:
\[
W_y \times 4.8 = 7200 \Rightarrow W_y = 1500 \, N
\]
Step 4: Find \(T_y\).
\[
T_y + 1500 = 2000 \Rightarrow T_y = 500 \, N
\]
Final Answer:
\[
\boxed{T_x = 0, \; T_y = 500, \; W_y = 1500}
\]