Step 1: Net axial force.
\[
F = \int_{-15}^{15} \sigma_{xx} \, dA, dA = 10 \, dy
\]
\[
F = 10 \int_{-15}^{15} (200y + 500) \, dy
\]
\[
= 10 \left[ 100y^2 + 500y \right]_{-15}^{15}
\]
At \(y=15\): \(22500 + 7500 = 30000\).
At \(y=-15\): \(22500 - 7500 = 15000\).
Difference = 15000.
\[
F = 10 \times 15000 = 150000 \, N = 150 \, kN
\]
So (A) is correct.
Step 2: Net moment about z.
\[
M_z = \int_{-15}^{15} \sigma_{xx} \cdot y \cdot dA
= 10 \int_{-15}^{15} (200y^2 + 500y) \, dy
\]
\[
= 10 \left[ \tfrac{200}{3} y^3 + 250 y^2 \right]_{-15}^{15}
\]
Evaluate:
At \(y=15\): \(225000 + 56250 = 281250\).
At \(y=-15\): \(-225000 + 56250 = -168750\).
Difference = 450000.
\[
M_z = 10 \times 450000 = 4.5 \times 10^6 \, Nmm = 4500 \, Nm
\]
So (C) is correct.
Final Answer:
\[
\boxed{(A) \; \text{and} \; (C)}
\]