Step 1: The relativistic Hamiltonian for a particle is given by: \[ H = \sqrt{m^2 c^4 + p^2 c^2} + V(x). \] This represents the total energy, where \( m \) is the rest mass and \( p \) is the momentum of the particle.
Step 2: The velocity \( v \) of the particle is related to the momentum \( p \) by the relativistic relation: \[ v = \frac{pc}{\sqrt{p^2 + m^2 c^2}}. \] This expression gives the speed in terms of the relativistic momentum and mass.
Step 3: The Lagrangian \( L \) is derived from the Hamiltonian. The relativistic Lagrangian is given by: \[ L = -m c^2 \sqrt{1 - \frac{v^2}{c^2}} - V(x), \] which accounts for both the kinetic energy and the potential energy.
A wheel of mass \( 4M \) and radius \( R \) is made of a thin uniform distribution of mass \( 3M \) at the rim and a point mass \( M \) at the center. The spokes of the wheel are massless. The center of mass of the wheel is connected to a horizontal massless rod of length \( 2R \), with one end fixed at \( O \), as shown in the figure. The wheel rolls without slipping on horizontal ground with angular speed \( \Omega \). If \( \vec{L} \) is the total angular momentum of the wheel about \( O \), then the magnitude \( \left| \frac{d\vec{L}}{dt} \right| = N(MR^2 \Omega^2) \). The value of \( N \) (in integer) is: