From Gauss's law:
\[
\Phi = \frac{q}{\varepsilon_0}
\]
Given \( q = 2\,\mu\text{C} = 2 \times 10^{-6} \, \text{C} \), and \( \varepsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2/\text{N m}^2 \)
\[
\Phi = \frac{2 \times 10^{-6}}{8.85 \times 10^{-12}} \approx 2.26 \times 10^5 \, \text{N m}^2 \text{C}^{-1}
\]
Alternatively, using simplified constant-based format:
\[
\Phi = \frac{2 \times 10^{-6}}{1/(4\pi \times 9 \times 10^9)} = 72\pi \times 10^3 \, \text{N m}^2 \text{C}^{-1}
\]