Question:

The electric field between the plates of a parallel plate capacitor changes at the rate of \(4.5 \times 10^{7} \, {V/m/s}\). If the plates of the capacitor are circular with radius 2 cm, then the displacement current inside the capacitor is:

Show Hint

Displacement current in capacitor: \( I_d = \epsilon_0 A \frac{dE}{dt} \). Use plate area and rate of change of electric field.
Updated On: Jun 3, 2025
  • 0.2 \(\mu A\)
  • 0.3 \(\mu A\)
  • 0.4 \(\mu A\)
  • 0.5 \(\mu A\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Given: \[ \frac{dE}{dt} = 4.5 \times 10^{7} \, {V/m/s}, r = 2 \, {cm} = 0.02 \, m \] Displacement current \( I_d \) is related to the rate of change of electric flux: \[ I_d = \epsilon_0 A \frac{dE}{dt} \] where - \( \epsilon_0 = 8.85 \times 10^{-12} \, {F/m} \), - \( A = \pi r^2 = \pi (0.02)^2 = 1.2566 \times 10^{-3} \, m^2 \). 
Calculate displacement current: \[ I_d = 8.85 \times 10^{-12} \times 1.2566 \times 10^{-3} \times 4.5 \times 10^{7} \] \[ I_d = 8.85 \times 1.2566 \times 4.5 \times 10^{-8} = 5.0 \times 10^{-7} \, A = 0.5 \, \mu A \]

Was this answer helpful?
0
0