The given boundary value problem is a Sturm-Liouville problem. The general solution to the differential equation \( \frac{d^2y}{dx^2} + \lambda y = 0 \) is of the form:
\[
y(x) = A \sin(\sqrt{\lambda}x) + B \cos(\sqrt{\lambda}x).
\]
Step 1: Apply the boundary conditions.
- \( y(0) = 0 \) implies \( B = 0 \), so the solution becomes:
\[
y(x) = A \sin(\sqrt{\lambda}x).
\]
- The second boundary condition is \( y(\pi) - \frac{dy}{dx}(\pi) = 0 \). Substituting the solution and its derivative at \( x = \pi \), we get:
\[
A \sin(\sqrt{\lambda} \pi) - A \sqrt{\lambda} \cos(\sqrt{\lambda} \pi) = 0.
\]
This gives the condition:
\[
\sin(\sqrt{\lambda} \pi) = \sqrt{\lambda} \cos(\sqrt{\lambda} \pi).
\]
Solving this equation for \( \lambda \), the eigenvalues are the square of the roots of \( k - \tan(k \pi) = 0 \), where \( k = \sqrt{\lambda} \).
Thus, the correct eigenvalues are \( \lambda = k^2_{n} \), where \( k_{n} \) are the roots of the equation \( k - \tan(k \pi) = 0 \).
Final Answer:
(C) \( \lambda = k^2_{n}, \, \text{where} \, k_{n}, n = 1, 2, 3, \dots \, \text{are the roots of} \, k - \tan(k \pi) = 0 \).