(i) \(Zn \left| Zn ^{2+}(1 M ) \| Ag ^{+}( lM )\right| Ag\)
\(Zn \left| Zn ^{2+}(1 M ) \| Ag ^{+}(1 M )\right| Ag\)
given \(E _{ Zn ^{2+} / Zn }^{\circ}=-0.762\)
\(E _{ Ag ^{+} / Ag }^{\circ}=0.799\)
From Nernst equation,
\(E = E ^{\circ}-\frac{0.059 l }{ n } \log \left[\frac{\text { Products }}{\text { Reactants }}\right]\)
Cell reaction for the given cell is
\(Zn +2 Ag ^{+} \longrightarrow Zn ^{2+}+2 Ag\)
\(E =E ^{\circ}{ }_{ Ag }^{+} / Ag ^{-} E ^{\circ} zn ^{2+} / Zn -\frac{0.059 l }{2} \log \frac{ Zn ^{2+}}{\left( Ag ^{+}\right)^{2}}\)
\(E = 0.799-(-0.762)-\frac{0.0591}{2} \log \left(\frac{1}{ l ^{2}}\right)\)
\(E = 1.569\, V\)
(ii) \(Cu \left| Cu ^{2+}(1 M ) \| Ag ^{+}( IM )\right| Ag\)
Given \(E _{ Cu ^{2+} / Cu }^{\circ} =0.337\)
\(E _{ Ag ^{\circ}}{ Ag } =0.799\)
Cell reaction
\(Cu +2 Ag ^{+} \longrightarrow Cu ^{2+}+2 Ag\)
\(E=E^{\circ}_{Ag^{+}/Ag} -E^{\circ}_{Cu^{2+}/Cu} - \frac{0.0591}{2} log \frac{Cu^{2+}}{\left(Ag^{+}\right)^{2}}\)
\(E = 0.799-0.337-\frac{0.0591}{2} \log \left(\frac{ l }{ l ^{2}}\right)\)
\(E = 0.462\, V\)
(iii) \(Zn \left| Zn ^{2+}(1 M )\right|\left| Co ^{2+}(1 M )\right| Co\)
Given, \(E _{ Zn ^{2+} / Zn }^{\circ}=-0.762 ; E _{ Co ^{2+} / Co }^{\circ}=-0.277\)
Cell reaction \(: Zn + Co ^{2+} \longrightarrow Zn ^{2+}+ Co\)
\(E = E ^{\circ} Co ^{2+} / Co ^{- E ^{\circ} Zn ^{2+} / Zn }-\frac{0.059 l }{2} \log \left[\frac{ Zn ^{2+}}{ Co ^{2+}}\right]\)
\(E =-0.277-(-0.762)-\frac{0.0591}{2} \log \left[\frac{1}{1}\right]\)
\(E =0.485\, V\)
(iv) \(Zn \left| Zn ^{2+}(1 M ) \| Cu ^{2+}( lM )\right| Cu\)
Given, \(E _{ Zn ^{2+} / Zn }^{\circ}=-0.762\)
\(E ^{\circ} Cu ^{2+} / Cu ^{2}=0.337\)
Cell reaction \(Zn + Cu ^{2+} \longrightarrow Zn ^{2+}+ Cu\)
\(E = E ^{\circ}{ Cu ^{2+} / Cu }- E ^{\circ} Zn ^{2+} / Zn ^{-} \frac{0.059 l }{2} \log \left[\frac{ Zn ^{2+}}{ Cu ^{2+}}\right]\)
\(E =0.337-(-0.762)-\frac{0.0591}{2} \log \left(\frac{1}{ l }\right)\)
\(E =1.099\)
Hence, cell B has maximum emf.
So, the correct answer is (B): \(Zn \left| Zn ^{2+}(1 M ) \| Ag ^{+}(1 M )\right| Ag\)
Consider the cell $Pt _{( s )}\left| H _2( g , 1 atm )\right| H ^{+}( aq , 1 M )|| Fe ^{3+}( aq ), Fe ^{2+}( aq ) Pt ( s )$ When the potential of the cell is $0.712 \, V$ at $298 \,K$, the ratio $\left[ Fe ^{2+}\right] /\left[ Fe ^{3+}\right]$ is ______(Nearest integer) Given : $Fe ^{3+}+ e ^{-}- Fe ^{2+}, E ^\theta Fe ^{3+}, Fe ^{2+} Pt =0771$ $\frac{2303 RT }{ F }=0.06 \,V$
This equation relates the equilibrium cell potential (also called the Nernst potential) to its concentration gradient across a membrane. If there is a concentration gradient for the ion across the membrane, an electric potential will form, and if selective ion channels exist the ion can cross the membrane.