(i) \(Zn \left| Zn ^{2+}(1 M ) \| Ag ^{+}( lM )\right| Ag\)
\(Zn \left| Zn ^{2+}(1 M ) \| Ag ^{+}(1 M )\right| Ag\)
given \(E _{ Zn ^{2+} / Zn }^{\circ}=-0.762\)
\(E _{ Ag ^{+} / Ag }^{\circ}=0.799\)
From Nernst equation,
\(E = E ^{\circ}-\frac{0.059 l }{ n } \log \left[\frac{\text { Products }}{\text { Reactants }}\right]\)
Cell reaction for the given cell is
\(Zn +2 Ag ^{+} \longrightarrow Zn ^{2+}+2 Ag\)
\(E =E ^{\circ}{ }_{ Ag }^{+} / Ag ^{-} E ^{\circ} zn ^{2+} / Zn -\frac{0.059 l }{2} \log \frac{ Zn ^{2+}}{\left( Ag ^{+}\right)^{2}}\)
\(E = 0.799-(-0.762)-\frac{0.0591}{2} \log \left(\frac{1}{ l ^{2}}\right)\)
\(E = 1.569\, V\)
(ii) \(Cu \left| Cu ^{2+}(1 M ) \| Ag ^{+}( IM )\right| Ag\)
Given \(E _{ Cu ^{2+} / Cu }^{\circ} =0.337\)
\(E _{ Ag ^{\circ}}{ Ag } =0.799\)
Cell reaction
\(Cu +2 Ag ^{+} \longrightarrow Cu ^{2+}+2 Ag\)
\(E=E^{\circ}_{Ag^{+}/Ag} -E^{\circ}_{Cu^{2+}/Cu} - \frac{0.0591}{2} log \frac{Cu^{2+}}{\left(Ag^{+}\right)^{2}}\)
\(E = 0.799-0.337-\frac{0.0591}{2} \log \left(\frac{ l }{ l ^{2}}\right)\)
\(E = 0.462\, V\)
(iii) \(Zn \left| Zn ^{2+}(1 M )\right|\left| Co ^{2+}(1 M )\right| Co\)
Given, \(E _{ Zn ^{2+} / Zn }^{\circ}=-0.762 ; E _{ Co ^{2+} / Co }^{\circ}=-0.277\)
Cell reaction \(: Zn + Co ^{2+} \longrightarrow Zn ^{2+}+ Co\)
\(E = E ^{\circ} Co ^{2+} / Co ^{- E ^{\circ} Zn ^{2+} / Zn }-\frac{0.059 l }{2} \log \left[\frac{ Zn ^{2+}}{ Co ^{2+}}\right]\)
\(E =-0.277-(-0.762)-\frac{0.0591}{2} \log \left[\frac{1}{1}\right]\)
\(E =0.485\, V\)
(iv) \(Zn \left| Zn ^{2+}(1 M ) \| Cu ^{2+}( lM )\right| Cu\)
Given, \(E _{ Zn ^{2+} / Zn }^{\circ}=-0.762\)
\(E ^{\circ} Cu ^{2+} / Cu ^{2}=0.337\)
Cell reaction \(Zn + Cu ^{2+} \longrightarrow Zn ^{2+}+ Cu\)
\(E = E ^{\circ}{ Cu ^{2+} / Cu }- E ^{\circ} Zn ^{2+} / Zn ^{-} \frac{0.059 l }{2} \log \left[\frac{ Zn ^{2+}}{ Cu ^{2+}}\right]\)
\(E =0.337-(-0.762)-\frac{0.0591}{2} \log \left(\frac{1}{ l }\right)\)
\(E =1.099\)
Hence, cell B has maximum emf.
So, the correct answer is (B): \(Zn \left| Zn ^{2+}(1 M ) \| Ag ^{+}(1 M )\right| Ag\)
A balloon filled with an air sample occupies \( 3 \, \text{L} \) volume at \( 35^\circ \text{C} \). On lowering the temperature to \( T \), the volume decreases to \( 2.5 \, \text{L} \). The temperature \( T \) is: [Assume \( P \)-constant]
Acetic acid dissociates 1.3%. What will be the pH of \(\frac {N}{10}\) solution of the acid.
Let z = x + iy be a complex number satisfying the following equation |z - (2 + i)| = |Re(z) - 4 | Which of the following options describes the above equation?
This equation relates the equilibrium cell potential (also called the Nernst potential) to its concentration gradient across a membrane. If there is a concentration gradient for the ion across the membrane, an electric potential will form, and if selective ion channels exist the ion can cross the membrane.