The electrical conductivity \( \sigma \) for a semiconductor is given by the equation:
\[
\sigma = q n \mu
\]
Where:
- \( q = 1.6 \times 10^{-19} \, \text{C} \) (charge of an electron),
- \( n = 1.45 \times 10^{10} \, \text{cm}^{-3} \) (intrinsic charge concentration of Si),
- \( \mu = 1350 \, \text{cm}^2 \, \text{V}^{-1} \, \text{s}^{-1} \) (drift mobility).
Rearranging the formula to solve for drift mobility \( \mu \), we get:
\[
\mu = \frac{\sigma}{q n}
\]
Substituting the given values:
\[
\mu = \frac{1350}{(1.6 \times 10^{-19})(1.45 \times 10^{10})} = 210 \, \text{cm}^2 \, \text{V}^{-1} \, \text{s}^{-1}.
\]
Thus, the drift mobility of electrons in the n-type Si crystal is approximately \( 210 \, \text{cm}^2 \, \text{V}^{-1} \, \text{s}^{-1} \).