The function \( \cos^{-1}(x) \) is defined only for \( x \in [-1, 1] \). Here, \( f(x) = \cos^{-1}(7x) \), so \( 7x \) must also lie in the interval \([-1, 1]\). Solve the inequality:
\(-1 \leq 7x \leq 1\).
Divide through by 7:
\(-\frac{1}{7} \leq x \leq \frac{1}{7}\).
Thus, the domain of \( f(x) = \cos^{-1}(7x) \) is \(\left[ -\frac{1}{7}, \frac{1}{7} \right]\).
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |