Given two circles, find centers and radii:
- Circle 1: Center \( C_1 = (4, 5) \), Radius \( r_1 = \sqrt{41} \)
- Circle 2: Center \( C_2 = (-1, 1) \), Radius \( r_2 = \sqrt{7} \)
External center of similitude lies along line joining \( C_1 \) and \( C_2 \), in the ratio \( r_1 : -r_2 \)
\[
\text{Ratio: } \sqrt{41} : -\sqrt{7}
\Rightarrow \text{Coordinates of point } S = \frac{\sqrt{41} \cdot (-1) + \sqrt{7} \cdot 4}{\sqrt{41} - \sqrt{7}}, \text{ etc.}
\]
After simplification, distance from origin turns out to be:
\[
\boxed{\frac{3\sqrt{26}}{5}}
\]