Let the speed of Partha be \( x \) km/h. The time taken by Partha to cover 60 km is: \[ \frac{60}{x} \ \text{hours.} \] Let the speed of Narayan be \( y \) km/h. The time taken by Narayan to cover 60 km is: \[ \frac{60}{y} \ \text{hours.} \]
From the problem: \[ \frac{60}{x} = \frac{60}{y} + 4 \] Additionally, Partha reaches the midpoint (30 km) two hours before Narayan reaches B: \[ \frac{30}{x} + 2 = \frac{60}{y} \]
From the second equation: \[ \frac{60}{y} - \frac{30}{x} = 2 \] We now have the system: \[ \begin{cases} \frac{60}{x} - \frac{60}{y} = 4 \\ \frac{60}{y} - \frac{30}{x} = 2 \end{cases} \]
Adding the two equations: \[ \left(\frac{60}{x} - \frac{60}{y}\right) + \left(\frac{60}{y} - \frac{30}{x}\right) = 4 + 2 \] \[ \frac{60}{x} - \frac{30}{x} = 6 \] \[ \frac{30}{x} = 6 \quad \Rightarrow \quad x = 5 \]
Substitute \( x = 5 \) into: \[ \frac{30}{5} + 2 = \frac{60}{y} \] \[ 6 + 2 = \frac{60}{y} \quad \Rightarrow \quad \frac{60}{y} = 8 \quad \Rightarrow \quad y = 7.5 \]
Final Answer: The speed of Partha is 5 km/h.