\( \frac{2\pi \lambda}{a}\)
\( \frac{2\pi a}{\lambda}\)
\( \frac{\lambda}{a}\)
\( \frac{a}{\lambda}\)
The general equation for a travelling wave is:
y = A sin(kx − ωt)
where:
A is the amplitude.
k is the wave number ($k = \frac{2\pi}{\lambda}$).
ω is the angular frequency ($\omega = 2\pi f$).
f is the frequency.
Comparing this with given equation: y = C sin($\frac{2\pi}{\lambda}$(at − x)), we get ω = $\frac{2\pi a}{\lambda}$.
Since ω = 2πf: 2πf = $\frac{2\pi a}{\lambda}$
$f = \frac{a}{\lambda}$
List I | List II | ||
---|---|---|---|
A | Mesozoic Era | I | Lower invertebrates |
B | Proterozoic Era | II | Fish & Amphibia |
C | Cenozoic Era | III | Birds & Reptiles |
D | Paleozoic Era | IV | Mammals |