Let coordinates of P be (x, y, z), O is origin.
Direction ratios of OP are,
a = 0 - x
b= 0 - y
c = 0 - z
$\Rightarrow$ As given: a, b, c are equal
$\Rightarrow$ x = y = z
$\Rightarrow$ OP = $\sqrt{(0 -x)^2 + (0 - y)^2 + (0 -z)^2} = \sqrt{3}$
$ [ \because \, OP = \sqrt{3} ] $
$\Rightarrow \, \sqrt{3x^2} = \sqrt{3} \, \Rightarrow 3x^2 = 3$
$\Rightarrow \, x^2 = 1$
$\Rightarrow x = \pm 1$
$\Rightarrow x = - 1, y = - 1, z = -1 $ or $x = 1, y = 1, z =1$
$\therefore$ Coordinates of P = (- 1, - 1, - 1) is given in the choice.