The given function is:
\[
f(x) = x \sqrt{a^2 - x^2} + a^2 \sin^{-1} \left( \frac{x}{a} \right)
\]
To differentiate this, apply the product rule for the first term and use the derivative formula for \( \sin^{-1}(x) \):
- The derivative of \( x \sqrt{a^2 - x^2} \) is:
\[
\frac{d}{dx} \left( x \sqrt{a^2 - x^2} \right) = \sqrt{a^2 - x^2} - \frac{x^2}{\sqrt{a^2 - x^2}}
\]
- The derivative of \( a^2 \sin^{-1} \left( \frac{x}{a} \right) \) is:
\[
\frac{d}{dx} \left( a^2 \sin^{-1} \left( \frac{x}{a} \right) \right) = \frac{1}{\sqrt{a^2 - x^2}}
\]
Thus, combining these results:
\[
f'(x) = 2\sqrt{a^2 - x^2}
\]
Step 4: Conclusion.
The derivative is \( 2\sqrt{a^2 - x^2} \), which corresponds to option (b).