Question:

The derivative of $\sin^{-1} x $ w.r.t $\cos^{- 1} \sqrt{1-x^{2}} $ is

Updated On: Jul 7, 2022
  • $\frac{1}{\sqrt{ 1 -x^2}}$
  • 1
  • $\cos^{-1} x $
  • $\tan^{-1} \frac{x}{ \sqrt{ 1 - x^2}}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Let $y =\sin^{-1}x $ and $z = \cos^{-1}\left(\sqrt{1-x^{2}}\right)$ $ = \cos^{-1} \left(\sqrt{1-\sin^{2}y}\right)$ $ = \cos^{-1}\left(\cos y \right) = y$ Now $ \frac{dy}{dz} = 1$. Hence reqd. derivative = 1.
Was this answer helpful?
0
0

Concepts Used:

Differentiability

Differentiability of a function A function f(x) is said to be differentiable at a point of its domain if it has a finite derivative at that point. Thus f(x) is differentiable at x = a
\(\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{f(a-h)-f(a)}{-h}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}\)
⇒ f'(a – 0) = f'(a + 0)
⇒ left-hand derivative = right-hand derivative.
Thus function f is said to be differentiable if left hand derivative & right hand derivative both exist finitely and are equal.
If f(x) is differentiable then its graph must be smooth i.e. there should be no break or corner.
Note:
(i) Every differentiable function is necessarily continuous but every continuous function is not necessarily differentiable i.e. Differentiability ⇒ continuity but continuity ⇏ differentiability

(ii) For any curve y = f(x), if at any point \(\frac{d y}{d x}\) = 0 or does not exist then, the point is called “critical point”.

3. Differentiability in an interval
(a) A function fx) is said to be differentiable in an open interval (a, b), if it is differentiable at every point of the interval.

(b) A function f(x) is differentiable in a closed interval [a, b] if it is

  • Differentiable at every point of interval (a, b)
  • Right derivative exists at x = a
  • Left derivative exists at x = b.