Using the de-Broglie wavelength formula \( \lambda = \frac{h}{mv} \), where \( h = 6.63 \times 10^{-34} \, \text{J·s} \), \( m \) is the mass of the electron \( (9.11 \times 10^{-31} \, \text{kg}) \), and \( v \) is the velocity of the electron, we calculate the wavelength as:
\[
\lambda = \frac{6.63 \times 10^{-34}}{(9.11 \times 10^{-31})(10^6)} \approx 1.23 \times 10^{-10} \, \text{m}.
\]